Question : If $a^2+b^2+c^2=16$, $x^2+y^2+z^2=25$ and $ax+by+cz=20$, then the value of $\frac{a+b+c}{x+y+z}$ is:
Option 1: $\frac{3}{5}$
Option 2: $\frac{5}{3}$
Option 3: $\frac{4}{5}$
Option 4: $\frac{5}{4}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{4}{5}$
Solution : Given: $a^2+b^2+c^2=16$----(equation 1) $x^2+y^2+z^2=25$-----(equation 2) $ax+by+cz=20$-----(equation 3) Substitute the values of $b=0$ and $c=0$ in the given equation 1, we get, $a^2+0^2+0^2=16$ $⇒a^2=16$ $\therefore a=4$ Substitute the values of $y=0$ and $z=0$ in the given equation 2, we get, $x^2+0^2+0^2=25$ $⇒x^2=25$ $\therefore x=5$ Substitute the values in the given equation 3, we get, $4\times5+0\times0+0\times0=20$ $⇒20=20$ So, the above equation is satisfied. Substitute the values in the given below equation, we get, $\therefore\frac{a+b+c}{x+y+z}=\frac{4+0+0}{5+0+0}=\frac{4}{5}$ Hence, the correct answer is $\frac{4}{5}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $a^{2}=by+cz$, $b^{2}=cz+ax$, $c^{2}=ax+by$, then the value of $\frac{x}{a+x}+\frac{y}{b+y}+\frac{z}{c+z}$ is:
Question : Three fractions $x, y$ and $z$ are such that $x > y > z$. When the smallest of them is divided by the greatest, the result is $\frac{9}{16}$, which exceeds $y$ by 0.0625. If $x+y+z=2 \frac{3}{12}$, then what is the value of $x + z$?
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $\frac{(x+y)}{z}=2$, then what is the value of $[\frac{y}{(y-z)}+\frac{x}{(x-z)}]?$
Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile