Question : If $a+b+c=1, ab+bc+ca=-1$ and $abc=-1$, then the value of $a^{3}+b^{3}+c^{3}$ is:
Option 1: 1
Option 2: – 1
Option 3: 2
Option 4: – 2
Correct Answer: 1
Solution : Given: $a+b+c=1, ab+bc+ca=-1$ and $abc=-1$ $a^2+b^2+c^2= (a+b+c)^2-2(ab+bc+ca)=3$ Consider, $a+b+ c = 1$ ......(1) ⇒ $a^3 +b^3+c^3 -3abc=(a+b+c)(a^2+b^2+c^2−ab−bc−ca)$ ⇒ $a^3 +b^3+c^3 =(a+b+c)(a^2+b^2+c^2−ab−bc−ca)+3abc$ ⇒ $a^3 +b^3+c^3 = (1)[3-(-1)]+3\times(-1)$ ⇒ $a^3 +b^3+c^3 = 4-3$ ⇒ $a^3 +b^3+c^3 = 1$ Hence, the correct answer is 1.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $a^{2}+b^{2}+c^{2}=ab+bc+ca,$ then the value of $\frac{a+c}{b}$ is:
Question : If $a+b+c=0$, then the value of $\frac{a^{2}+b^{2}+c^{2}}{ab+bc+ca}$ is:
Question : If a + b + c = 19, ab + bc + ca = 120, then what is the value of a3 + b3 + c3 – 3abc?
Question : If a + b + c = 5 and ab + bc + ca = 7, then the value of a3 + b3 + c3 – 3abc is:
Question : In $\triangle ABC, \angle A+\angle B=145^{\circ}$ and $\angle C+2\angle B=180^{\circ}$. State which one of the following relations is true.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile