Question : If $a^2+b^2=2$ and $c^2+d^2=1$, then the value of $(ad-bc)^2+(ac+bd)^2$ is:
Option 1: $\frac{4}{9}$
Option 2: $\frac{1}{2}$
Option 3: $1$
Option 4: $2$
Correct Answer: $2$
Solution :
Given: $a^2+b^2=2$ and $c^2+d^2=1$
$(ad-bc)^2+(ac+bd)^2$
$= (ad)^2+(bc)^2-2abcd+(ac)^2+(bd)^2+2abcd$
$=d^2(a^2+b^2)+c^2(a^2+b^2)$
$=(a^2+b^2)(c^2+d^2)$
$=2 \times 1$
$=2$
Hence, the correct answer is 2.
Related Questions
Know More about
Staff Selection Commission Sub Inspector ...
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Get Updates BrochureYour Staff Selection Commission Sub Inspector Exam brochure has been successfully mailed to your registered email id “”.