2 Views

Question : If $a+b+c=15$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{71}{abc}$, then the value of $a^{3}+b^{3}+c^{3}-3abc$ is:

Option 1: 160

Option 2: 180

Option 3: 200

Option 4: 220


Team Careers360 10th Jan, 2024
Answer (1)
Team Careers360 22nd Jan, 2024

Correct Answer: 180


Solution : Given: $a+b+c=15$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{71}{abc}$
Taking LCM of (a, b, c), we have:
⇒ $\frac{bc+ac+ab}{abc}=\frac{71}{abc}$
⇒ $bc+ac+ab=71$
We know that $a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2(ab+bc+ca)$
By putting the values, we have,
$a^{2}+b^{2}+c^{2}=(15)^{2}-2×71$
⇒ $a^{2}+b^{2}+c^{2}=225-142$
⇒ $a^{2}+b^{2}+c^{2}=83$
We know that $a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-(ab+bc+ca))$
By putting the values, we have,
$a^{3}+b^{3}+c^{3}-3abc=(15)(83-71)$
Or, $a^{3}+b^{3}+c^{3}-3abc=15×12=180$
Hence, the correct answer is 180.

SSC CGL Complete Guide

Candidates can download this ebook to know all about SSC CGL.

Download EBook

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books