Question : If $a+b+c=15$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{71}{abc}$, then the value of $a^{3}+b^{3}+c^{3}-3abc$ is:
Option 1: 160
Option 2: 180
Option 3: 200
Option 4: 220
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 180
Solution : Given: $a+b+c=15$ $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{71}{abc}$ Taking LCM of (a, b, c), we have: ⇒ $\frac{bc+ac+ab}{abc}=\frac{71}{abc}$ ⇒ $bc+ac+ab=71$ We know that $a^{2}+b^{2}+c^{2}=(a+b+c)^{2}-2(ab+bc+ca)$ By putting the values, we have, $a^{2}+b^{2}+c^{2}=(15)^{2}-2×71$ ⇒ $a^{2}+b^{2}+c^{2}=225-142$ ⇒ $a^{2}+b^{2}+c^{2}=83$ We know that $a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-(ab+bc+ca))$ By putting the values, we have, $a^{3}+b^{3}+c^{3}-3abc=(15)(83-71)$ Or, $a^{3}+b^{3}+c^{3}-3abc=15×12=180$ Hence, the correct answer is 180.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{2+a}{a}+\frac{2+b}{b}+\frac{2+c}{c}=4$, then the value of $\frac{ab+bc+ca}{abc}$ is:
Question : If $\cot A = \frac{15}{8}$, then what will be the value of $\tan 2 A ?$
Question : If $\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1$, then find the value of $\frac{2}{1+a}+\frac{2}{1+b}+\frac{2}{1+c}$.
Question : If $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$ where $a \neq b\neq c\neq 0$, then the value of $a^{2}b^{2}c^{2}$ is:
Question : What is the value of ${a}^3+{b}^3+{c}^3$ if $(a+b+c)=0$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile