Question : If $x^2-xy+y^2=2$ and $x^4+x^2y^2+y^4=6$, then the value of $(x^2+xy+y^2)$ is:
Option 1: 1
Option 2: 12
Option 3: 3
Option 4: 36
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 3
Solution : Given: The values of $x^2-xy+y^2=2$ and $x^4+x^2y^2+y^4=6$. The algebraic identity used is $(x^2+xy+y^2)(x^2-xy+y^2)=x^4+x^2y^2+y^4$ ⇒ $(x^2+xy+y^2)(x^2-xy+y^2)=x^4+x^2y^2+y^4$ ⇒ $(x^2+xy+y^2)\times2=6$ ⇒ $(x^2+xy+y^2)=3$ Hence, the correct answer is 3.
Candidates can download this ebook to know all about SSC CGL.
Admit Card | Eligibility | Application | Selection Process | Preparation Tips | Result | Answer Key
Question : If $x=\sqrt[3]{28}, y=\sqrt[3]{27}$, then the value of $x+y-\frac{1}{x^{2}+xy+y^{2}}$ is:
Question : If $xy = -6$ and $x^3+ y^3= 19$ ($x$ and $y$ are integers), then what is the value of $\frac{1}{x^{–1}}+\frac{1}{y^{–1}}$?
Question : If $(x+y)^2=xy+1$ and $x^3-y^3=1$, what is the value of $(x-y)$?
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $xy(x+y)=m$, then the value of $(x^3+y^3+3m)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile