Question : If $a^2+b^2+c^2=14$ and $a+b+c=6$, then the value of $(ab+bc+ca)$ is:
Option 1: 11
Option 2: 12
Option 3: 13
Option 4: 14
Correct Answer: 11
Solution :
Given: $a^2+b^2+c^2=14$ and $a+b+c=6$.
On squaring the given equation $a+b+c=6$, we get,
$(a+b+c)^2=6^2$
⇒ $a^2+b^2+c^2+2(ab+bc+ca)=36$
Substitute the value of $a^2+b^2+c^2=14$ in the above equation and we get,
⇒ $14+2(ab+bc+ca)=36$
⇒ $2(ab+bc+ca)=22$
⇒ $(ab+bc+ca)=11$
Hence, the correct answer is 11.
Related Questions
Know More about
Staff Selection Commission Combined Grad ...
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Get Updates BrochureYour Staff Selection Commission Combined Graduate Level Exam brochure has been successfully mailed to your registered email id “”.