Question : If $r\sin\theta=\frac{7}{2}$ and $r\cos\theta=\frac{7\sqrt3}{2}$, then the value of $\theta$ is:
Option 1: 30°
Option 2: 45°
Option 3: 60°
Option 4: 75°
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 30°
Solution : Given: $r\sin\theta=\frac{7}{2}$ and $r\cos\theta=\frac{7\sqrt3}{2}$ So, $\frac{r\sin\theta}{r\cos\theta}=\frac{\frac{7}{2}}{\frac{7\sqrt3}{2}}$ $⇒\tan\theta=\frac{1}{\sqrt{3}}=\tan 30°$ $\therefore\theta = 30°$ Hence, the correct answer is 30°.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $7\sin^2\ \theta+3\cos^2\ \theta=4, (0°<\theta<90°)$, then find the value of $\tan\theta$:
Question : If $\theta>0$ be an acute angle, then the value of $\theta$ in degrees satisfying $\frac{\cos^2\theta-3 \cos\theta+2}{\sin^2\theta}=1$ is:
Question : If $\tan\theta=1$, then the value of $\frac{8\sin\theta\:+\:5\cos\theta}{\sin^{3}\theta\:–\:2\cos^{3}\theta\:+\:7\cos\theta}$ is:
Question : If $x\sin^{3}\theta +y\cos^{3}\theta=\sin\theta\cos\theta$ and $x\sin\theta-y\cos\theta=0$, then the value of $\left ( x^{2}+y^{2} \right )$ equals:
Question : If $\sec\theta-\tan\theta=\frac{1}{\sqrt3}$, then the value of $\sec\theta.\tan\theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile