Question : If $\tan A=\frac{1}{2}$ and $\tan B=\frac{1}{3}$, then the value of $A+B$ is:
Option 1: $60^\circ$
Option 2: $15^\circ$
Option 3: $30^\circ$
Option 4: $45^\circ$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $45^\circ$
Solution : Given: $\tan A=\frac{1}{2}$ and $\tan B=\frac{1}{3}$ We know that $\tan(A+B)=\frac{\tan A +\tan B}{1-\tan A \tan B}$ ⇒ $\tan(A+B)= \frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}\times\frac{1}{3}}$ ⇒ $\tan(A+B)=1$ $\therefore(A+B)= \frac{\pi}{4}=45 ^\circ$ Hence, the correct answer is $45^\circ$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\frac{x-x\tan^{2}30^{\circ}}{1+\tan^{2}30^{\circ}}=\sin^{2}30^{\circ}+4\cot^{2}45^{\circ}-\sec^{2}60^{\circ}$, then value of $x$ is:
Question : If $\mathrm{A}=\cot 30^{\circ} \tan 60^{\circ}+\cot 60^{\circ} \tan 30^{\circ}$, then what is the value of A?
Question : If $A=60^{\circ}$ and $B=30^{\circ}$, find the value of $\frac{(\tan A-\tan B)}{(1+\tan A \tan B)}$.
Question : If $\frac{\cos \theta}{(1+\sin \theta)}+\frac{\cos \theta}{(1-\sin \theta)}=4$ and $\theta$ is acute, then the value of $\theta$ is:
Question : If $A=30^{\circ}$, then find the value of $\frac{(2 \tan A)}{\left(1-\tan^2 A\right)}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile