Question : If $\cos 5 \alpha=\sin \alpha$ and $5 \alpha<90^{\circ}$, then the value of $\tan 2 \alpha$ is:
Option 1: $\sqrt{2}$
Option 2: $\frac{1}{\sqrt{2}}$
Option 3: $\frac{1}{\sqrt{3}}$
Option 4: $\sqrt{3}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{\sqrt{3}}$
Solution : Given, $\cos 5 \alpha=\sin \alpha$ We know, $\cos(90°-\theta)=\sin\theta$ ⇒ $\cos5\alpha=\cos(90°-\alpha)$ ⇒ $5\alpha=90°-\alpha$ ⇒ $6\alpha=90°$ ⇒ $\alpha=15°$ Now, $\tan 2 \alpha=\tan(2\times 15°)=\tan30°=\frac{1}{\sqrt3}$ Hence, the correct answer is $\frac{1}{\sqrt3}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin (\theta +18^{\circ})=\cos 60^{\circ}(0< \theta < 90^{\circ})$, then the value of $\cos 5\theta$ is:
Question : If $\sin \alpha=\frac12$ and $\sin \beta=\frac12$, then what is the value of $\cos (\alpha+\beta)$? $(0°<\alpha, \beta<90° )$
Question : If $\sin(3\alpha -\beta )=1$ and $\cos(2\alpha+\beta)=\frac{1}{2}$, then the value of $\tan \alpha$ is:
Question : If $\cos A+\sin A=\sqrt{2}\cos A$, then $\cos A-\sin A$ is equal to: (where $0^{\circ}< A< 90^{\circ}$)
Question : The value of $\frac{\operatorname{sin} 58^{\circ}}{\cos 32^{\circ}}+\frac{\sin 55^{\circ} \sec 35^{\circ}}{\tan 5^{\circ} \tan 45^{\circ} \tan 85^{\circ}}$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile