Question : If $a=\frac{1}{a-\sqrt{6}}$ and $(a>0)$, then the value of $\left(a+\frac{1}{a}\right)$ is:
Option 1: $\sqrt{6}$
Option 2: $\sqrt{10}$
Option 3: $\sqrt{15}$
Option 4: $\sqrt{7}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\sqrt{10}$
Solution : $a=\frac{1}{a-\sqrt{6}}(x>0)$ $⇒a^2-a\sqrt 6-1=0$ $⇒a^2-1=a\sqrt 6$ Multiplying both sides by $\frac{1}{a}$, we get, $⇒a-\frac{1}{a}=\sqrt 6$ Squaring both sides, we get, $⇒(a-\frac{1}{a})^2=(\sqrt 6)^2$ $⇒a^2+\frac{1}{a^2}-2=6$ Adding 4 to both sides, we get, $⇒a^2+\frac{1}{a^2}+2=6+4$ $⇒(a+\frac{1}{a})^2=10$ $\therefore a+\frac{1}{a}=\sqrt{10}$ Hence, the correct answer is $\sqrt{10}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : If $\left(y^2+\frac{1}{y^2}\right)=74$ and $y>1$, then find the value of $\left(y-\frac{1}{y}\right)$.
Question : If $a+b :\sqrt{ab} = 4:1 $ where $ a > b > 0$, then $ a:b$ is:
Question : If $a^2+\frac{1}{a^2}=\frac{7}{3}$, then what is the value of $\left(a^3-\frac{1}{a^3}\right)?$
Question : If $\left(w+\frac{1}{w}\right)=6$, then what will be the value of $\left(w-\frac{1}{w}\right)?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile