Question : If $a=26$ and $b=22$, then the value of $\frac{a^3-b^3}{a^2-b^2}-\frac{3 a b}{a+b}$ is_______.
Option 1: $\frac{5}{3}$
Option 2: $\frac{13}{11}$
Option 3: $\frac{1}{3}$
Option 4: $\frac{11}{13}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{1}{3}$
Solution : Given, $a=26$ and $b=22$ Now, $\frac{a^3-b^3}{a^2-b^2}-\frac{3ab}{a+b}$ = $\frac{(a-b)(a^2+b^2-ab)}{(a-b)(a+b)}-\frac{3ab}{a+b}$ = $\frac{a^2+b^2-2ab}{a+b}$ = $\frac{(a-b)^2}{a+b}$ = $\frac{(26-22)^2}{(26+22)}$ = $\frac{4^2}{48}$ = $\frac{1}{3}$ Hence, the correct answer is $\frac{1}{3}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\tan A=\frac{5}{12}$, then the value of $\cos A=$______.
Question : If $\frac{11-13x}{x}+\frac{11-13y}{y}+\frac{11-13z}{z}=5$, then what is the value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$?
Question : If $\cot A=\frac{12}{5}$, then the value of $\sin A=?$
Question : Let $x=\frac{5 \frac{3}{4}-\frac{3}{7} \times 15 \frac{3}{4}+2 \frac{2}{35} \div 1 \frac{11}{25}}{\frac{3}{4} \div 5 \frac{1}{4}+5 \frac{3}{5} \div 3 \frac{4}{15}}$. When $y$ is added to $x$, the result is $\frac{7}{13}$. What is the value of $y$?
Question : If $2=x+\frac{1}{1+\frac{1}{5+\frac{1}{2}}}$, then the value of $x$ is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile