Question : If $0^{\circ} < \theta < 90^{\circ}$ and $2 \sin^{2}\theta +3\cos\theta =3$, then the value of $\theta$ is:
Option 1: 30°
Option 2: 60°
Option 3: 45°
Option 4: 75°
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 60°
Solution : We know that $\sin^2 \theta + \cos ^2 \theta = 1$ Using the value of $\sin^2 \theta$ in the equation, we get, ⇒ $2(1- \cos ^2 \theta)+3\cos\theta=3$ ⇒ $2-2\cos ^2 \theta+3\cos\theta=3$ ⇒ $2\cos ^2 \theta-3\cos\theta+1=0$ ⇒ $2\cos ^2 \theta-2\cos\theta-\cos\theta+1=0$ ⇒ $(2\cos\theta-1)(\cos\theta-1)=0$ ⇒ $\cos\theta=\frac{1}{2}$ or $\cos\theta=1$ Since $0^{\circ} < \theta < 90^{\circ}$, So, $\cos\theta=\frac{1}{2}=\cos60^\circ$ $\therefore \theta = 60^{\circ}$ Hence, the correct answer is 60°.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sin (\theta +18^{\circ})=\cos 60^{\circ}(0< \theta < 90^{\circ})$, then the value of $\cos 5\theta$ is:
Question : If $\frac{\cos \theta}{(1+\sin \theta)}+\frac{\cos \theta}{(1-\sin \theta)}=4$ and $\theta$ is acute, then the value of $\theta$ is:
Question : If $4\sin^{2}\theta-1=0$ and angle $\theta$ is less then $90^{\circ}$, the value of $\cos^{2}\theta+\tan^{2}\theta$ is: (Take $0^{\circ}< \theta< 90^{\circ}$)
Question : If $\cos(A+B)=0$ and $\sin(A-B)=0$, then what is the value of $\angle A$ and $\angle B$ ? ( $0^\circ < A, B \leq 90 ^\circ$)
Question : Which of the following is a value of $\theta$, when $\cos ^2 \theta-2+\cos \theta=0$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile