Question : If $a= 9.6,b= 4.44,$ and $c= 5.16$, then the value of $a^3- b^3- c^3- 3 abc$ is:
Option 1: 0
Option 2: –1
Option 3: 2
Option 4: 1
Correct Answer: 0
Solution : Given: $a= 9.6,b= 4.44,$ and $c= 5.16$ We know, If $a-b-c=0,$ then $a^3-b^3-c^3-3abc=0$ Here, $a-b-c=9.6-4.44-5.16=0$ So, $a^3-b^3-c^3-3abc=0$ Hence, the correct answer is 0.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $a+b+c=1, ab+bc+ca=-1$ and $abc=-1$, then the value of $a^{3}+b^{3}+c^{3}$ is:
Question : The numerical value of $\frac{(a–b)^{2}}{(b–c)(c–a)}+\frac{(b–c)^{2}}{(c–a)(a–b)}+\frac{(c–a)^{2}}{(a–b)(b–c)}$ is: $(a\neq b\neq c)$
Question : If $a+b+c=0$, then the value of $\frac{a^{2}+b^{2}+c^{2}}{ab+bc+ca}$ is:
Question : If $a=331, b=336$ and $c=–667$, then the value of $a^3+b^3+c^3–3abc$ is:
Question : If $a+b+c=0$, then the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{a b}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile