Question : If $\sin A=\frac{5}{13}$ and $7 \cot B=24$, then the value of $(\sec A \cos B)(\operatorname{cosec} B \tan A)$ is:
Option 1: $\frac{65}{42}$
Option 2: $\frac{13}{14}$
Option 3: $\frac{15}{13}$
Option 4: $\frac{13}{7}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{65}{42}$
Solution : Given that $\sin A=\frac{5}{13}$ and $7 \cot B=24$, $\sin A=\frac{5}{13}$, Use the identity $\sin^2 A + \cos^2 A = 1$ $⇒\cos A = \sqrt{1 - \sin^2 A} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \frac{12}{13}$ $\therefore\tan A = \frac{\sin A}{\cos A} = \frac{5}{12}$ $\therefore\sec A = \frac{1}{\cos A} = \frac{13}{12}$ Given, $7 \cot B=24$ $\therefore\cot B = \frac{24}{7}$ $⇒\operatorname{cosec} B= \sqrt{1 + \cot^2 B} = \sqrt{1 + \left(\frac{24}{7}\right)^2} = \frac{25}{7}$ $⇒\cos B = \sqrt{1-\frac{1}{{\operatorname{cosec}^2 B}} }=\sqrt{1-(\frac{7}{{25}})^2 }=\frac{24}{{25}}$ $⇒(\sec A \cos B)(\operatorname{cosec} B \tan A) = \left(\frac{13}{12} \times \frac{24}{25}\right) \left(\frac{25}{7} \times \frac{5}{12}\right) = \frac{65}{42}$ Hence, the correct answer is $\frac{65}{42}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\cot A=\frac{12}{5}$, then the value of $(\sin A+\cos A) \times \operatorname{cosec} A$ is_____.
Question : The value of $\sqrt{\frac{1+\cos A}{1-\cos A}}$ is:
Question : Which of the following is equal to $[\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}]$?
Question : The value of $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}$ is:
Question : $\left(\frac{\tan ^3 \theta}{\sec ^2 \theta}+\frac{\cot ^3 \theta}{\operatorname{cosec}^2 \theta}+2 \sin \theta \cos \theta\right) \div\left(1+\operatorname{cosec}^2 \theta+\tan ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, is equal to:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile