Question : If $x+y+z=13,x^2+y^2+z^2=133$ and $x^3+y^3+z^3=847$, then the value of $\sqrt[3]{x y z}$ is:
Option 1: $8$
Option 2: $7$
Option 3: $-9$
Option 4: $-6$
Correct Answer: $-6$
Solution : Given: $x+y+z=13,x^2+y^2+z^2=133$ and $x^3+y^3+z^3=847$ $(x+y+z)^2 = x^2+y^2+z^2+2(xy+yz+zx)$ ⇒ $13^2=133+2(xy+yz+zx)$ ⇒ $xy+yz+zx=\frac{169-133}{2}=\frac{36}{2}=18$ $x^3+y^3+z^3-3xyz = (x+y+z)(x^2+y^2+z^2-(xy+yz+zx))$ $⇒847-3xyz = 13 ×(133-18)$ $⇒-3xyz = 13×115 - 847 = 1495-847 =648 $ $⇒xyz = \frac{648}{-3} = -216$ $\therefore \sqrt[3]{xyz} = \sqrt[3]{-216} = -6$ Hence, the correct answer is $-6$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^4+x^2 y^2+y^4=133$ and $x^2-x y+y^2=7$, then what is the value of $xy$?
Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Question : If $x+y+z=19, x y z=216$ and $x y+y z+z x=114$, then the value of $\sqrt{x^3+y^3+z^3+x y z}$ is:
Question : If $\frac{x}{4 y}=\frac{3}{4}$ then, the value of $\frac{2 x+3 y}{x–2 y}$ is:
Question : If $x^2+8 y^2+12 y-4 x y+9=0$, then the value of $(7 x+8 y)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile