Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Option 1: –64
Option 2: 4
Option 3: 0
Option 4: –4
Correct Answer: –4
Solution : Given: $x + y + z = 17,xy + yz + zx = 111$ and $xyz = 171$ $(x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx)$ $⇒17^2 = x^2 + y^2 + z^2 + 2 × 111$ $⇒x^2 + y^2 + z^2 = 289 - 222$ $⇒x^2 + y^2 + z^2 = 67$ Using algebraic identity $x^3 + y^3 + z^3 - 3xyz = (x + y + z)[x^2 + y^2 + z^2 – (xy + yz + zx)]$ $⇒x^3 + y^3 + z^3 - 3 × 171 = 17 × (67 - 111)$ $⇒x^3 + y^3 + z^3 - 513 = -748$ $⇒x^3 + y^3 + z^3 = -748 + 513$ $⇒x^3 + y^3 + z^3 = -235$ So, $\sqrt[3]{(x^3+y^3+z^3+xyz)} = \sqrt[3]{(-235+171)}=-4$ Hence, the correct answer is –4.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}$, where $x \neq y \neq z$, is:
Question : What is $\frac{\left (x^{2}-y^{2} \right)^{3}+\left (y^{2}-z^{2} \right )^{3}+\left (z^{2}-x^{2} \right )^{3}}{\left (x-y \right)^{3}+\left (y-z \right )^{3}+\left (z-x \right)^{3}}?$
Question : If $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$, then what is the value of $(3 A-B-\sqrt{15} C)$?
Question : If $x+y+z=19, x y z=216$ and $x y+y z+z x=114$, then the value of $\sqrt{x^3+y^3+z^3+x y z}$ is:
Question : If $\left(5 \sqrt{5} x^3-3 \sqrt{3} y^3\right) \div(\sqrt{5} x-\sqrt{3} y)=\left(A x^2+B y^2+C x y\right)$, then the value of $(3 A+B-\sqrt{15} C)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile