Question : If $\frac{A}{L}+\frac{M}{B}=1$ and $\frac{B}{M}+\frac{N}{C}=1$, then the value of $\frac{L}{A}+\frac{C}{N}$ is:
Option 1: $\frac{B}{M}$
Option 2: 0
Option 3: 1
Option 4: $\frac{M}{B}$
Correct Answer: 1
Solution : Given: $\frac{A}{L}+\frac{M}{B}=1$............................(equation 1) $\frac{B}{M}+\frac{N}{C}=1$.................................(equation 2) Now, $\frac{A}{L}+\frac{M}{B}=1$ ⇒ $\frac{A}{L}=\frac{B-M}{B}$ ⇒ $\frac{L}{A}=\frac{B}{B-M}$ Similarly, $\frac{C}{N}=\frac{M}{M-B}$ Putting the values in $\frac{L}{A} + \frac{C}{N}$, we get: $\frac{L}{A} + \frac{C}{N} =\frac{B}{B-M}+\frac{M}{M-B} $ $⇒\frac{L}{A} + \frac{C}{N} =\frac{B}{B-M}-\frac{M}{B-M} $ $\therefore\frac{L}{A} + \frac{C}{N} =\frac{B-M}{B-M}=1$ Hence, the correct answer is 1.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $a+b+c=0$, then the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{a b}$ is:
Question : If $a+b+c=m$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$, then the average of $a^{2}, b^{2},$ and $c^{2}$ is:
Question : If $a, b, c$ are all non-zero and $a+b+c=0$, then find the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{ab}$.
Question : If $(a^2 = b + c)$, $(b^2 = a + c)$, $(c^2 = b + a)$. Then, what will be the value of $(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1})$?
Question : The value of $\frac{(m^2+n^2)(m-n)-(m-n)^3}{(m^2 n-m n^2)}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile