Question : If $x:y::2:3$ and $2:x::4:8$, then the value of $y$ is:
Option 1: 6
Option 2: 8
Option 3: 4
Option 4: 12
Correct Answer: 6
Solution : Given: $x:y::2:3$ and $2:x::4:8$ $2:x::4:8$ ⇒ $\frac{2}{x}=\frac{4}{8}$ ⇒ $4x=16$ ⇒ $x=\frac{16}{4}=4$ Now, $x:y::2:3$ ⇒ $\frac{x}{y}=\frac{2}{3}$ ⇒ $\frac{4}{y}=\frac{2}{3}$ (Putting $x=4$) ⇒ $2y=12$ $\therefore y=6$ Hence, the correct answer is 6.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x^4+x^2 y^2+y^4=133$ and $x^2-x y+y^2=7$, then what is the value of $xy$?
Question : If $x^4+y^4=x^2 y^2$, then the value of $x^6+y^6$ is:
Question : If $x^4+x^2 y^2+y^4=21$ and $x^2+xy+y^2=3$, then what is the value of $4xy $?
Question : If $\frac{x}{4 y}=\frac{3}{4}$ then, the value of $\frac{2 x+3 y}{x–2 y}$ is:
Question : If $x+y+z=13,x^2+y^2+z^2=133$ and $x^3+y^3+z^3=847$, then the value of $\sqrt[3]{x y z}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile