Question : If $\cos x=\sin y$ and $\cot(x–40°)=\tan(50°–y)$, then the values of $x$ and $y$ are:
Option 1: $x=70°,y=2°$
Option 2: $x=75°,y=15°$
Option 3: $x=85°,y=5°$
Option 4: $x=80°,y=10°$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $x=85°,y=5°$
Solution : Given, $\cos x=\sin y$ ⇒ $\cos x=\cos(90°–y)$ ⇒ $x = (90°–y)$ ----------------------(equation 1) Also, $\cot(x–40°)=\tan(50°–y)$ ⇒ $\cot(x–40°)=\cot(90°–50°+y)$ ⇒ $(x–40°)=(40°+y)$ ⇒ $x=(80°+y)$ ------------------------(equation 2) Now, equating the value of $x$ from equation 1 and equation 2 we get, $(90°–y)=(80°+y)$ ⇒ $2y=10°$ ⇒ $y=5°$ So, $x=(90°–5°)=85°$ Hence, $x=85°,y=5°$. Hence, the correct answer is '$x=85°,y=5°$'.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : Which of the following will satisfy $a^2 = b^2 + (ab)^2$ for the values $a$ and $b$?
Question : If $\sin \left(5 x-25^{\circ}\right)=\cos \left(5 y+25^{\circ}\right)$, where $5 x-25^{\circ}$ and $5 y+25^{\circ}$ are acute angles, then the value of $(x+y)$ is:
Question : If $\tan x = \frac{7}{5}$, the value of $\frac{9 \sin x – \frac{42}{5} \cos x}{15 \sin x + 21 \cos x}$ is:
Question : $\frac{\cos A}{1-\tan A}+\frac{\sin A}{1-\cot A}=$___________.
Question : Using trigonometric formulas, find the value of $(\frac{\sin (x-y)}{\sin (x+y)})(\frac{\tan x+\tan y}{\tan x-\tan y})$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile