Question : If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}; 0°<(A+B)<90°; A > B$, then the values of $A$ and $B$ are respectively:
Option 1: 45° and 15°
Option 2: 15° and 45°
Option 3: 30° and 30°
Option 4: 60° and 30°
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 45° and 15°
Solution : Given: $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}$ $\tan (A+B)=\sqrt{3}=\tan60°$ ⇒ $A+B=60°$ .........................(1) Also, $\tan (A-B)=\frac{1}{\sqrt{3}}=\tan30°$ ⇒ $A-B=30°$ ............................(2) Solving equations (1) and (2) we get, $A=45°$ and $B=15°$ Hence, the correct answer is 45° and 15°.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : What is the value of $\frac{\tan 45^{\circ}-\tan 15^{\circ}}{1+\tan 45^{\circ} \tan 15^{\circ}}$?
Question : If $x\sin ^{2}60^{\circ}-\frac{3}{2}\sec 60^{\circ}\tan^{2}30^{\circ}+\frac{4}{5}\sin ^{2}45^{\circ}\tan ^{2}60^{\circ}=0$, then $x$ is:
Question : If $7\sin^{2}\theta+3\cos^{2}\theta=4$, and $0^{\circ}< \theta< 90^{\circ}$, then the value of $\tan\theta$ is:
Question : If $7\sin^2\ \theta+3\cos^2\ \theta=4, (0°<\theta<90°)$, then find the value of $\tan\theta$:
Question : Using $\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$, find the value of $\tan 15°$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile