Question : If $x^3+y^3+z^3=3(1+xyz), P = y +z -x, Q = z+x-y$ and $R = x+y-z$, then what is the value of $P^3 + Q^3+R^3 - 3PQR?$
Option 1: 9
Option 2: 8
Option 3: 12
Option 4: 6
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 12
Solution : Given: $P=y+z-x,Q=z+x-y,R=x+y-z$ and $x^{3}+y^{3}+z^{3}-3xyz=3$ We know, $P^{3}+Q^{3}+R^{3}-3PQR=\frac{1}{2}(P+Q+R)((P-Q)^{2}+(Q-R)^{2}+(R-P)^{2})$ $P+Q+R=x+y+z$ $(P-Q)^{2}=(2y-2x)^2=4(x^2+y^2-2xy)$ $(Q-R)^{2}=(2z-2y)^2=4(z^2+y^2-2zy)$ $(R-P)^{2}=(2x-2z)^2=4(x^2+z^2-2xz)$ So, $P^{3}+Q^{3}+R^{3}-3PQR=\frac{1}{2}(x+y+z)(4(2x^2+2y^2+2z^2-2xy-2yz-2zx))$ ⇒ $P^{3}+Q^{3}+R^{3}-3PQR=4(x^{3}+y^{3}+z^{3}-3xyz)$ $\therefore P^{3}+Q^{3}+R^{3}-3PQR=4\times 3=12$ Hence, the correct answer is 12.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x+y+z = 9$, then the value of $(x−4)^3+(y−2)^3+(z−3)^3−3(x−4)(y−2)(z−3)$ is:
Question : $\text { If } x^2+y^2+z^2=x y+y z+z x \text { and } x=1 \text {, then find the value of } \frac{10 x^4+5 y^4+7 z^4}{13 x^2 y^2+6 y^2 z^2+3 z^2 x^2}$.
Question : Simplify $\frac{1}{2 + 2 p} + \frac{1}{2 + 2 q} + \frac{1}{2 + 2 r}$, where $p = \frac{x}{y + z}$, if $q = \frac{y}{z + x}$ and $r = \frac{z}{x + y}$.
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{6(x-y)(y-z)(z-x)}$, where $x \neq y \neq z$, is equal to:
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile