12 Views
Question : If $\frac{(a+b)}{c}=\frac{6}{5}$ and $\frac{(b+c)}{a}=\frac{9}{2}$, then what is the value of $\frac{(a+c)}{b}\; ?$
Option 1: $\frac{9}{5}$
Option 2: $\frac{11}{7}$
Option 3: $\frac{7}{11}$
Option 4: $\frac{7}{4}$
Answer (1)
Correct Answer: $\frac{7}{4}$
Solution : Given: $\frac{(a+ b)}{c} = \frac{6}{5}$
⇒ $5a + 5b = 6c$ ........(i)
Also, $\frac{(b+c)}{a} = \frac{9}{2}$
⇒ $2b + 2c = 9a$ .........(ii)
Adding both the equations (i) and (ii),
⇒ $-4a + 7b = 4c$
⇒ $4(a + c) = 7b$
⇒ $\frac{(a + c)}{b} = \frac{7}{4}$
Hence, the correct answer is $\frac{7}{4}$.
SSC CGL Complete Guide
Candidates can download this ebook to know all about SSC CGL.
Download EBookKnow More About
Related Questions
Upcoming Exams
Exam Date:
20 Jun, 2025
- 22 Jun, 2025
Exam Date:
21 Jun, 2025
- 22 Jun, 2025
Application Date:
3 Jun, 2025
- 23 Jun, 2025
1st Stage CBT
Admit Card Date:
1 Jun, 2025
- 24 Jun, 2025
Exam Date:
25 Jun, 2025
- 29 Jun, 2025