Question : If $a=-12, b=-6$, and $c=18$, then what is the value of $\frac{2 a b c}{9}$?
Option 1: 554
Option 2: 288
Option 3: - 288
Option 4: 144
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: 288
Solution : Given $a=-12, b=-6$, and $c=18$ $\therefore$ $\frac{2 a b c}{9} = \frac{2\times(-12) \times (-6) \times 18}{9}$ $= 2\times 12\times 6\times 2 = 288$ Hence, the correct answer is 288.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\frac{(a+b)}{c}=\frac{6}{5}$ and $\frac{(b+c)}{a}=\frac{9}{2}$, then what is the value of $\frac{(a+c)}{b}\; ?$
Question : If $\frac{1}{a}(a^2+1)=3$, then the value of $\frac{a^6+1}{a^3}$ is:
Question : If $a: b: c=\frac{1}{4}: \frac{1}{3}: \frac{1}{2}$, then $\frac{a}{b}: \frac{b}{c}: \frac{c}{a}=$?
Question : If $a+b+c = 0$, then the value of $\small \frac{1}{(a+b)(b+c)}+\frac{1}{(b+c)(c+a)}+\frac{1}{(c+a)(a+b)}$ is:
Question : If $\frac{a^2}{b+c}=\frac{b^2}{c+a}=\frac{c^2}{a+b}=1$, then $\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile