Question : If $a + b + c = 12$ and $ab + bc + ca = 22$, then what is the value of $a^3 + b^3 + c^3 - 3abc ?$
Option 1: 1052
Option 2: 936
Option 3: 924
Option 4: 876
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 936
Solution : Using the given equation $a + b + c = 12$, we can substitute this value into the formula: $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$ ⇒ $a^3 + b^3 + c^3 - 3abc = (12)(a^2 + b^2 + c^2 - ab - bc - ca)$ To find the value of $a^2 + b^2 + c^2 - ab - bc - ca$, we'll square the equation $a + b + c = 12$ ⇒ $(a + b + c)^2 = 12^2$ ⇒ $a^2 + b^2 + c^2 + 2(ab + bc + ca) = 144$ Substituting the given equation $ab + bc + ca = 22$: $a^2 + b^2 + c^2 + 2(22) = 144$ ⇒ $a^2 + b^2 + c^2 = 100$ Now we have the value of $a^2 + b^2 + c^2 - ab - bc - ca$: $a^2 + b^2 + c^2 - ab - bc - ca = 100 - 22 = 78$ Substituting this value back into the formula, we get: $a^3 + b^3 + c^3 - 3abc = (12)(78)$ ⇒ $a^3 + b^3 + c^3 - 3abc = 936$ Hence, the correct answer is 936.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $a + b + c = 0$ and $ab + bc + ca = -11$, then what is the value of $a^2+b^2+c^2$?
Question : For real $a, b, c$ if $a^2+b^2+c^2=ab+bc+ca$, then value of $\frac{a+c}{b}$ is:
Question : If $a+b+c=16,ab+bc+ca=81$, then what is the value of $a^2+b^2+c^2$?
Question : If $(a+b+c) \neq 0$, then $(a+b+c)\left(a^2+b^2+c^2-a b-b c-c a\right)$ is equal to:
Question : If a + b + c = 1, ab + bc + ca = –1, and abc = –1, then what is the value of a3 + b3 + c3?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile