2 Views

Question : If $a + b + c = 12$ and $ab + bc + ca = 22$, then what is the value of $a^3 + b^3 + c^3 - 3abc ?$

Option 1: 1052

Option 2: 936

Option 3: 924

Option 4: 876


Team Careers360 17th Jan, 2024
Answer (1)
Team Careers360 21st Jan, 2024

Correct Answer: 936


Solution : Using the given equation $a + b + c = 12$, we can substitute this value into the formula:
$a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$
⇒ $a^3 + b^3 + c^3 - 3abc = (12)(a^2 + b^2 + c^2 - ab - bc - ca)$
To find the value of $a^2 + b^2 + c^2 - ab - bc - ca$, we'll square the equation $a + b + c = 12$
⇒ $(a + b + c)^2 = 12^2$
⇒ $a^2 + b^2 + c^2 + 2(ab + bc + ca) = 144$
Substituting the given equation $ab + bc + ca = 22$:
$a^2 + b^2 + c^2 + 2(22) = 144$
⇒ $a^2 + b^2 + c^2 = 100$
Now we have the value of $a^2 + b^2 + c^2 - ab - bc - ca$:
$a^2 + b^2 + c^2 - ab - bc - ca = 100 - 22 = 78$
Substituting this value back into the formula, we get:
$a^3 + b^3 + c^3 - 3abc = (12)(78)$
⇒ $a^3 + b^3 + c^3 - 3abc = 936$
Hence, the correct answer is 936.

How to crack SSC CHSL

Candidates can download this e-book to give a boost to thier preparation.

Download Now

Know More About

Related Questions

TOEFL ® Registrations 2024
Apply
Accepted by more than 11,000 universities in over 150 countries worldwide
Manipal Online M.Com Admissions
Apply
Apply for Online M.Com from Manipal University
View All Application Forms

Download the Careers360 App on your Android phone

Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile

150M+ Students
30,000+ Colleges
500+ Exams
1500+ E-books