Question : If $P:Q=1: 3, Q:R=3:4,$ and $R: S=2:1$, then what is the value of $P:S$?
Option 1: $3:1$
Option 2: $2:1$
Option 3: $1:2$
Option 4: $3:2$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $1:2$
Solution : $P: Q = 1 : 3, Q: R = 3: 4, R: S = 2 : 1$ So, $P:Q: R=1:3:4$ Now, $R:S=2:1⇒R:S=4:2$ So, $P:Q:R: S=1:3:4:2$ $\therefore P : S = 1 : 2$ Hence, the correct answer is $1 : 2$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $r\sin\theta=\frac{7}{2}$ and $r\cos\theta=\frac{7\sqrt{3}}{2}$, then the value of $r$ is:
Question : Determine the value of $\small \left (\frac{1}{r}+\frac{1}{s} \right)$, when $r^{3}+s^{3}=0$ and $r+s=6$.
Question : If $\operatorname{cosec} \theta+\cot \theta=\mathbf{s}$, then what is the value of $\cos \theta$?
Question : If $p+q+r=0$, then what is the simplified value of the expression $(\frac{p^2}{p^2-q r}+\frac{q^2}{q^2-p r}+\frac{r^2}{r^2-p q})$?
Question : If $(p-q)=6,(r-q)=5$ and $(r-p)=3$, then find the value of $\frac{p^3+q^3+r^3-3 p q r}{p+q+r}$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile