Question : If $\tan \theta+\sin \theta=A$ and $\tan \theta-\sin \theta=B$, then what is the value of $A^2-B^2$?
Option 1: $\tan \theta \sin \theta$
Option 2: $4 \cot \theta$
Option 3: $4 \tan \theta \sin \theta$
Option 4: $2 \tan \theta \sin \theta$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4 \tan \theta \sin \theta$
Solution : $\tan \theta+\sin \theta=A$ and $\tan \theta-\sin \theta=B$ $ A^2-B^2=(A+B)(A-B) $ $⇒ A^2 - B^2 = (2 \tan \theta) × (2 \sin \theta)$ $⇒ A^2 - B^2 = 4 \tan \theta \sin \theta $ Therefore, $A^2 - B^2 = 4 \tan \theta \sin \theta$ Hence, the correct answer is $4 \tan \theta \sin \theta$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\theta$ be an acute angle and $\tan \theta+\cot \theta=2$, then the value of $2 \tan ^2 \theta+\cot ^2 \theta+\tan ^4 \theta \cot ^4 \theta$ is:
Question : The value of $\frac{\sin\theta-2\sin^{3}\theta}{2\cos^{3}\theta-\cos\theta}$ is equal to:
Question : If $\tan \theta-\cot \theta=4$, then find the value of $\tan ^2 \theta+\cot ^2 \theta$.
Question : If $\sqrt{3} \tan ^2 \theta-4 \tan \theta+\sqrt{3}=0$, then what is the value of $\tan ^2 \theta+\cot ^2 \theta$?
Question : If $\tan \theta \cdot \tan 2 \theta=1$, then the value of $\cot 5 \theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile