Question : If $a + b + c = 6$ and $a^2+b^2+c^2=40$, then what is the value of $a^3+b^3+c^3-3abc$?
Option 1: 212
Option 2: 252
Option 3: 232
Option 4: 206
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 252
Solution : Given that $a + b + c = 6$ and $a^2+b^2+c^2=40$, $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ac)$. $⇒6^2 = 40 + 2(ab+bc+ac)$ $⇒ab+bc+ac = -2$ $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)$ $⇒a^3+b^3+c^3-3abc=6 \times (40 +2)$ $⇒a^3+b^3+c^3-3abc=6 \times 42 $ $⇒a^3+b^3+c^3-3abc=252 $ Hence, the correct answer is 252.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $9 a+9 b+9 c=81$ and $4 a b+4 b c+4 c a=160$, then what is the value of $6 a^2+6 b^2+6 c^2$?
Question : If $(a+b+c) \neq 0$, then $(a+b+c)\left(a^2+b^2+c^2-a b-b c-c a\right)$ is equal to:
Question : If $a+b+c=0$ and $a^2+b^2+c^2=40$, then what is the value of $a b+b c+c a$?
Question : If $a + b + c = 12$ and $ab + bc + ca = 22$, then what is the value of $a^3 + b^3 + c^3 - 3abc ?$
Question : What is the value of (a + b + c) {(a - b)2 + (b - c)2 + (c - a)2}?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile