Question : If $m = \sec \theta- \tan \theta$ and $n = \operatorname{cosec} \theta + \cot \theta$, then what is the value of $m + n(m-1)$?
Option 1: 2
Option 2: 1
Option 3: 0
Option 4: –1
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: –1
Solution : Given: $m = \sec \theta- \tan \theta$ and $n = \operatorname{cosec} \theta + \cot \theta$ $⇒m=\frac{(1 - \text{sin $\theta$})}{\text{cos $\theta$}}$ and $⇒n=\frac{(1 + \text{cos $\theta$})}{\text{sin $\theta$}}$ $m + n(m - 1)$ $= m + nm - n$ $=\frac{(1 - \text{sin $\theta$})}{\text{cos $\theta$}}+\frac{(1 - \text{sin $\theta$})}{\text{cos $\theta$}}×\frac{(1 + \text{cos $\theta$})}{\text{sin $\theta$}}-\frac{(1 + \text{cos $\theta$})}{\text{sin $\theta$}}$ $=\frac{(\sin\theta-\sin^2\theta+1-\sin\theta\cos\theta+\cos\theta-\sin\theta-\cos\theta-\cos^2\theta)}{\text{sin $\theta$} × \text{cos $\theta$}}$ $=\frac{-(\sin^2\theta+\cos^2\theta)+1-\sin\theta\cos\theta}{\text{sin $\theta$} × \text{cos $\theta$}}$ $=\frac{- \text{sin $\theta$} × \text{cos $\theta$}}{\text{sin $\theta$}× \text{cos $\theta$}}$ $= - 1$ Hence, the correct answer is –1.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : What is the value of $\frac{\cot \theta+\operatorname{cosec} \theta-1}{\cot \theta-\operatorname{cosec} \theta+1}$?
Question : If $0^{\circ}< \theta< 90^{\circ}$ and $\operatorname{cosec \theta} =\cot^{2}\theta$, then the value of expression $\operatorname{cosec^{4}\theta}–\operatorname{2cosec^{2}\theta}-\cot^{2}\theta$ is equal to:
Question : $\cot ^2 \theta-\operatorname{cosec}^2 \theta$ equals to:
Question : If $\cos\theta+\sin\theta=m$ and $\sec\theta+\operatorname{cosec \theta}=n$, then the value $n\left ( m^{2}-1 \right )$ is equal to:
Question : If $\theta$ be an acute angle and $\tan \theta+\cot \theta=2$, then the value of $2 \tan ^2 \theta+\cot ^2 \theta+\tan ^4 \theta \cot ^4 \theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile