Question : If $2 x-y=2$ and $x y=\frac{3}{2}$, then what is the value of $x^3-\frac{y^3}{8}?$
Option 1: $\frac{9}{2}$
Option 2: $-\frac{5}{4}$
Option 3: $\frac{5}{2}$
Option 4: $\frac{13}{4}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{13}{4}$
Solution : $2x-y=2$ ⇒ $x-\frac{y}{2}=1$ [Dividing both sides by 2] Also, $xy=\frac{3}{2}$ So, $x^3-\frac{y^3}{8}$ = $(x-\frac{y}{2})^3+3(x)(\frac{y}{2})(x-\frac{y}{2})$ = $(1)^3+\frac{3}{2}(\frac{3}{2})(1)$ = $1+\frac{9}{4}$ = $\frac{13}{4}$ Hence, the correct answer is $\frac{13}{4}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $(x-\frac{1}{3})^2+(y-4)^2=0$, then what is the value of $\frac{y+x}{y-x}$?
Question : If $x-\frac{1}{x}=5, x \neq 0$, then what is the value of $\frac{x^6+3 x^3-1}{x^6-8 x^3-1} ?$
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : Let $x=\frac{5 \frac{3}{4}-\frac{3}{7} \times 15 \frac{3}{4}+2 \frac{2}{35} \div 1 \frac{11}{25}}{\frac{3}{4} \div 5 \frac{1}{4}+5 \frac{3}{5} \div 3 \frac{4}{15}}$. When $y$ is added to $x$, the result is $\frac{7}{13}$. What is the value of $y$?
Question : What is the value of $\frac{X}{Y}$ if $\frac{X-5 Y}{X+5 Y}=\frac{7}{13}$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile