Question : If $x+y+z=10$, $x y+y z+z x=25$ and $x y z=100$, then what is the value of $(x^3+y^3+z^3)$?
Option 1: 450
Option 2: 540
Option 3: 550
Option 4: 570
Correct Answer: 550
Solution : Given that $x + y + z = 10$, $xy + yz + zx = 25$, and $xyz = 100$. Now, $(x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx)$ $⇒100 = x^2 + y^2 + z^2 + 2\times25$ $⇒x^2 + y^2 + z^2 = 100 - 50 = 50$ Now, we can substitute $x + y + z = 10$, $x^2 + y^2 + z^2 = 50$, and $xyz = 100$ into the formula, $x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx)$ $⇒x^3 + y^3 + z^3 = 10\times50 - 10\times25 + 3\times100 = 500 - 250 + 300 = 550$ Hence, the correct answer is 550.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $x+y+z=17, x y z=171$ and $x y+y z+z x=111$, then the value of $\sqrt[3]{\left(x^3+y^3+z^3+x y z\right)}$ is:
Question : If $x+y+z=19, x y z=216$ and $x y+y z+z x=114$, then the value of $x^3+y^3+z^3+x y z$ is:
Question : If $x+y+z=19, x y z=216$ and $x y+y z+z x=114$, then the value of $\sqrt{x^3+y^3+z^3+x y z}$ is:
Question : If $x+y+z=13,x^2+y^2+z^2=133$ and $x^3+y^3+z^3=847$, then the value of $\sqrt[3]{x y z}$ is:
Question : If $x^2 = y+z$, $y^2=z+x$, $z^2=x+y$, then the value of $\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile