Question : If $x=1-y$ and $x^2=2-y^2$, then what is the value of $xy$?
Option 1: $1$
Option 2: $2$
Option 3: $-\frac{1}{2}$
Option 4: $–1$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $-\frac{1}{2}$
Solution : Given: $x = 1-y$ ⇒ $x+y = 1$ Squaring both sides, we get, ⇒ $x^2+y^2+2xy=1$ Using $x^2 = 2-y^2$ ⇒ $2-y^2+y^2+2xy=1$ ⇒ $2+2xy =1$ $\therefore xy = -\frac{1}{2}$ Hence, the correct answer is $-\frac{1}{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $xy = -6$ and $x^3+ y^3= 19$ ($x$ and $y$ are integers), then what is the value of $\frac{1}{x^{–1}}+\frac{1}{y^{–1}}$?
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Question : If $\sin17°=\frac{x}{y}$, then the value of $(\sec17°–\sin73°)$ is:
Question : If $xy(x+y)=m$, then the value of $(x^3+y^3+3m)$ is:
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile