Question : If $0 \leq \theta \leq 90^{\circ}$, and $\sin \left(2 \theta+50^{\circ}\right)=\cos \left(4 \theta+16^{\circ}\right)$, then what is the value of $\theta$ (in degrees)?
Option 1: $10^{\circ}$
Option 2: $8^{\circ}$
Option 3: $4^{\circ}$
Option 4: $12^{\circ}$
Correct Answer: $4^{\circ}$
Solution : Given, $\sin \left(2 \theta+50°\right)=\cos \left(4 \theta+16°\right)$ We know, $\sin(90°-\theta)=\cos\theta$ So, $\sin \left(2 \theta+50°\right)=\sin(90°-(4 \theta+16°)$ ⇒ $2\theta+50°=90°-4\theta-16°$ ⇒ $2\theta+4\theta=90°-16°-50°$ ⇒ $6\theta=24°$ $\therefore\theta=4°$ Hence, the correct answer is $4°$.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $3\left(\cot ^2 \theta-\cos ^2 \theta\right)=1-\sin ^2 \theta, 0^{\circ}<\theta<90^{\circ}$, then $\theta$ is equal to:
Question : If $\cot \theta=\frac{1}{\sqrt{3}}, 0^{\circ}<\theta<90^{\circ}$, then the value of $\frac{2-\sin ^2 \theta}{1-\cos ^2 \theta}+\left(\operatorname{cosec}^2 \theta-\sec \theta\right)$ is:
Question : If $3+\cos ^2 \theta=3\left(\cot ^2 \theta+\sin ^2 \theta\right), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $(\cos \theta+2 \sin \theta)$ ?
Question : If $\frac{\cos ^2 \theta}{\cot ^2 \theta–\cos ^2 \theta}=3$, where $0^{\circ}<\theta<90^{\circ}$ then the value of $\theta$ is:
Question : If $(\cos \theta+\sin \theta):(\cos \theta-\sin \theta)=(\sqrt{3}+1):(\sqrt{3}-1), 0^{\circ}<\theta<90^{\circ}$, then what is the value of $\sec \theta$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile