Question : If $\sin \theta+\tan \theta=\mathrm{p}$ and $\tan \theta-\sin \theta=\mathrm{q}$, then which of the relation satisfies for given values of $\mathrm{p}$ and $\mathrm{q}$?
Option 1: $\mathrm{p}^2-\mathrm{q}^2=4 \sqrt{\mathrm{pq}}$
Option 2: $\mathrm{p}^2-\mathrm{q}^2=8 \sqrt{\mathrm{pq}}$
Option 3: $\mathrm{p}^2+\mathrm{q}^2=4 \sqrt{\mathrm{pq}}$
Option 4: $\mathrm{p}^2+\mathrm{q}^2=4 \mathrm{pq}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\mathrm{p}^2-\mathrm{q}^2=4 \sqrt{\mathrm{pq}}$
Solution : Given, $\sin \theta+\tan \theta=\mathrm{p}$ and $\tan \theta-\sin \theta=\mathrm{q}$ Now, $\mathrm{pq}=(\tan \theta-\sin \theta)(\tan \theta+\sin \theta)$ Using $(a-b)(a+b)=a^2-b^2$ ⇒ $\mathrm{pq}=\tan^2\theta-\sin^2\theta$ ⇒ $\mathrm{pq}=\frac{\sin^2\theta}{\cos^2\theta}-\sin^2\theta$ ⇒ $\mathrm{pq}=\sin^2\theta(\frac{1}{\cos^2\theta}-1)$ ⇒ $\mathrm{pq}=\sin^2\theta(\frac{1-\cos^2\theta}{\cos^2\theta})$ We know, $\sin^2\theta+\cos^2\theta = 1$ ⇒ $\mathrm{pq}=\sin^2\theta(\frac{\sin^2\theta}{\cos^2\theta})$ ⇒ $\mathrm{pq}=\sin^2\theta\tan^2\theta$ And, $\mathrm{p^2}=(\sin \theta+\tan \theta)^2$ $=\sin^2 \theta+\tan^2 \theta+2\sin\theta\tan\theta$ Also, $\mathrm{q^2}=(\tan \theta-\sin \theta)^2$ $=\tan^2\theta+\sin^2\theta-2\tan\theta\sin\theta$ $\therefore$ $\mathrm{p^2-q^2}=(\sin^2 \theta+\tan^2 \theta+2\sin\theta\tan\theta)-(\tan^2\theta+\sin^2\theta-2\tan\theta\sin\theta)=4\sin\theta\tan\theta$ $\therefore$ we can write $\mathrm{p^2-q^2}=4\sqrt{\mathrm{pq}}$ Hence, the correct answer is $\mathrm{p}^2-\mathrm{q}^2=4 \sqrt{\mathrm{pq}}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\tan \theta+\sin \theta=A$ and $\tan \theta-\sin \theta=B$, then what is the value of $A^2-B^2$?
Question : If $\sqrt{3}\tan\theta=3\sin\theta$, then the value of $(\sin^{2}\theta-\cos^{2}\theta)$ is:
Question : If $\theta$ is an acute angle and $\sin \theta \cos \theta=2 \cos ^3 \theta-\frac{1}{4} \cos \theta$, then the value of $\sin \theta$ is:
Question : If $(4 \sin \theta+5 \cos \theta)=3$, then the value of $(4 \cos \theta-5 \sin \theta)$ is:
Question : If $\tan \theta=\frac{8}{15}$, then the value of $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile