Question : If $4^{(x+y)} = 256$ and $(256)^{(x–y)} = 4$, what are the values of $x$ and $y?$
Option 1: $\frac{17}{8}$ and $\frac{15}{8}$
Option 2: $\frac{17}{4}$ and $\frac{15}{4}$
Option 3: $\frac{9}{17}$ and $\frac{15}{17}$
Option 4: $\frac{8}{17}$ and $\frac{8}{15}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{17}{8}$ and $\frac{15}{8}$
Solution : Given: $4^{(x+y)}=256$ ⇒ $4^{(x+y)} = 4^4$ ⇒ $x+y = 4$ ⇒ $x = 4-y$-----(1) And $(256)^{(x-y)}=4$ ⇒ $(4^4)^{(x-y)}=4^1$ ⇒ $4x-4y =1$-----(2) Putting the value of $x$ from equation (1), we get, $4(4-y)-4y = 1$ ⇒ $16-4y-4y =1$ $\therefore y =\frac{15}{8}$ Now, substituting the value of $y$ in equation (1), we get, $x = 4-\frac{15}{8}$ $\therefore x = \frac{17}{8}$ Hence, the correct answer is $\frac{17}{8}$ and $\frac{15}{8}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\frac{x}{2}-\frac{\left [4\left (\frac{15}{2}-\frac{x}{3} \right ) \right ]}{3} = –\frac{x}{18}$ then what is the value of $x$?
Question : If $x^4+y^4+x^2 y^2=17 \frac{1}{16}$ and $x^2-x y+y^2=5 \frac{1}{4}$, then one of the values of $(x-y)$ is:
Question : If $\frac{x}{8}+\frac{8}{x}=1$, then the value of $x^3$ is:
Question : If $2 x-y=2$ and $x y=\frac{3}{2}$, then what is the value of $x^3-\frac{y^3}{8}?$
Question : If $xy = -6$ and $x^3+ y^3= 19$ ($x$ and $y$ are integers), then what is the value of $\frac{1}{x^{–1}}+\frac{1}{y^{–1}}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile