Question : If $\left(x+\frac{1}{x}\right)=2 \sqrt{2}$ and $x>1$, what is the value of $\left(x^6-\frac{1}{x^6}\right)$?
Option 1: $140\sqrt{2}$
Option 2: $116\sqrt{2}$
Option 3: $144\sqrt{2}$
Option 4: $128\sqrt{2}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $140\sqrt{2}$
Solution : $\left(x+\frac{1}{x}\right)=2 \sqrt{2}$ Squaring both sides. ⇒ $ (x+\frac{1}{x})^2= 8$ ⇒ $(x-\frac{1}{x})^2 = (x+\frac{1}{x})^2-4$ ⇒ $(x-\frac{1}{x})^2=8-4=4$ ⇒ $(x-\frac{1}{x})= 2$ So, $(x^2-\frac{1}{x^2})=(x+\frac{1}{x})(x-\frac{1}{x})= 2\sqrt{2}×2=4\sqrt{2}$ Cubing both sides, we get ⇒ $x^6-\frac{1}{x^6}-3(x^2-\frac{1}{x^2})=64×(2\sqrt{2})$ ⇒ $x^6-\frac{1}{x^6}-3(4\sqrt{2})=128\sqrt{2}$ ⇒ $x^6-\frac{1}{x^6}=140\sqrt{2}$ Hence, the correct answer is $140\sqrt{2}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\left(x+\frac{1}{x}\right)=\sqrt{6}$ and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)$?
Question : If $\left(x^2 - \frac{1}{x^2}\right) = 4 \sqrt{6}$ and $x>1$, what is the value of $\left(x^3 - \frac{1}{x^3}\right)?$
Question : If $\left(x-\frac{1}{x}\right)^2=12$, what is the value of $\left(x^2-\frac{1}{x^2}\right)$, given that $x>0$?
Question : If ${\left(x-\frac{1}{x}\right)=\sqrt{6}}$ and $x > 1$, what is the value of ${\left(x^8-\frac{1}{x^8}\right)}$?
Question : If $\left(x+\frac{1}{x}\right)=5$, and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile