Question : If $x^2-7 x+1=0$ and $0<x<1$, what is the value of $x^2-\frac{1}{x^2}?$
Option 1: $21\sqrt{5}$
Option 2: $-21\sqrt{5}$
Option 3: $28\sqrt{5}$
Option 4: $-28\sqrt{5}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $-21\sqrt{5}$
Solution : Given: $x^2-7 x+1=0$ ⇒ $x+\frac{1}{x}=7$ Squaring the equation, we get, $(x+\frac{1}{x})^2=7^2$ ⇒ $x^2+\frac{1}{x^2}+2=49$ ⇒ $x^2+\frac{1}{x^2}=47$ And we know, $(x-\frac{1}{x})^2=x^2+\frac{1}{x^2}-2$ ⇒ $(x-\frac{1}{x})^2=47-2=45$ ⇒ $x-\frac{1}{x}=\pm\sqrt{45}$ ⇒ $x=-\sqrt{45}$ [As $0<x<1$] Now consider, $x^2-\frac{1}{x^2}$ Using $a^2-b^2=(a-b)(a+b)$ $=(x+\frac{1}{x})(x-\frac{1}{x})$ $=7\times (-\sqrt{45})$ $=-7\times 3\sqrt5=-21\sqrt5$ Hence, the correct answer is $-21\sqrt5$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\left(x^2+\frac{1}{x^2}\right)=7$, and $0<x<1$, find the value of $x^2-\frac{1}{x^2}$.
Question : If $x^2-\sqrt{7} x+1=0$, then what is the value of $x^5+\frac{1}{x^5} ?$
Question : If $x+\left [\frac{1}{(x+7)}\right]=0$, what is the value of $x-\left [\frac{1}{(x+7)}\right]$?
Question : If $\left(x^2+\frac{1}{x^2}\right)=6$ and $0<x<1$, what is the value of $x^4-\frac{1}{x^4}$?
Question : If $\frac{\sqrt{5+x}+\sqrt{5-x}}{\sqrt{5+x}-\sqrt{5-x}}=3$, what is the value of $x$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile