Question : If $x^2-5\sqrt{5}x+1=0$ and $x > 0$, what is the value of $(x^3-\frac{1}{x^3})$?
Option 1: 1331
Option 2: 1364
Option 3: 1296
Option 4: 1244
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1364
Solution : Given: $x^2-5\sqrt{5}x+1=0$, and $x >0$ Dividing by $x$ on both sides, we get $x-5\sqrt{5}+\frac{1}{x}=0$ ⇒ $x+\frac{1}{x}=5\sqrt{5}$ Squaring both sides, we get ⇒ $(x+\frac{1}{x})^2=(5\sqrt{5})^2=125$ We know that $(x-\frac{1}{x})^2=(x+\frac{1}{x})^2-4$ ⇒ $(x-\frac{1}{x})^2=125-4=121$ ⇒ $(x-\frac{1}{x})=11$ Now, $(x-\frac{1}{x})^3=x^3-\frac{1}{x^3}-3×x×\frac{1}{x}(x-\frac{1}{x})$ ⇒ $11^3=x^3-\frac{1}{x^3}-3×11$ ⇒ $x^3-\frac{1}{x^3}=1331+33$ $\therefore x^3-\frac{1}{x^3}=1364$ Hence, the correct answer is 1364.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=\frac{1}{x-5}(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $x^3=270+y^3$ and $x=(6+y)$, then what is the value of $(x+y)? $(given that $x>0$ and $y>0$)
Question : If $x=\frac{4\sqrt{15}}{\sqrt{5}+\sqrt{3}}$, the value of $\frac{x+\sqrt{20}}{x–\sqrt{20}}+\frac{x+\sqrt{12}}{x–\sqrt{12}}$ is:
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : If $x^{4}+\frac{1}{x^{4}}=16$, then what is the value of $x^{2}+\frac{1}{x^{2}}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile