Question : If $\left(x+\frac{1}{x}\right)=5 \sqrt{2}$, and $x>1$, what is the value of $\left(x^6-\frac{1}{x^6}\right) ?$
Option 1: $22970 \sqrt{23}$
Option 2: $23030 \sqrt{23}$
Option 3: $23060 \sqrt{23}$
Option 4: $22960 \sqrt{23}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $23030 \sqrt{23}$
Solution : Given, $\left(x+\frac{1}{x}\right)=5 \sqrt{2}$ Squaring both sides, we get, $\left(x+\frac{1}{x}\right)^2=(5 \sqrt{2})^2$ ⇒ $x^2+\frac{1}{x^2}+2\times x\times \frac{1}{x}=25\times 2$ ⇒ $x^2+\frac{1}{x^2}+2=50$ ⇒ $x^2+\frac{1}{x^2}=50-2$ ⇒ $x^2+\frac{1}{x^2}=48$ Subtracting 2 from both sides, we get, ⇒ $(x-\frac{1}{x})^2=48-2$ ⇒ $(x-\frac{1}{x})^2=46$ ⇒ $(x-\frac{1}{x})=\sqrt{46}$ Now consider, $\left(x^6-\frac{1}{x^6}\right)$ We know, $a^2-b^2=(a-b)(a+b)$ $=(x^3+\frac{1}{x^3})(x^3-\frac{1}{x^3})$ Also, $a^3+b^3=(a+b)(a^2-ab+b^2)$ and $a^3-b^3=(a-b)(a^2+ab+b^2)$ $=[(x+\frac{1}{x})(x^2-x\times\frac{1}{x}+\frac{1}{x^2})][(x-\frac{1}{x})(x^2+x\times\frac{1}{x}+\frac{1}{x^2})]$ $=(x+\frac{1}{x})(x^2+\frac{1}{x^2}-1)(x-\frac{1}{x})(x^2+\frac{1}{x^2}+1)$ $=(5\sqrt2)(48-1)(\sqrt{46})(48+1)$ $=5\sqrt2\times 47\times \sqrt{46}\times 49$ $=11515\sqrt{2\times 46}$ $=11515\times2\sqrt{23}$ $=23030\sqrt{23}$ Hence, the correct answer is $23030\sqrt{23}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $x=(\sqrt{6}-1)^{\frac{1}{3}}$, then the value of $\left(x-\frac{1}{x}\right)^3+3\left(x-\frac{1}{x}\right)$ is:
Question : If $x=\frac{1}{x-5}(x>0)$, then the value of $x+\frac{1}{x}$ is:
Question : If $\left(y^2+\frac{1}{y^2}\right)=74$ and $y>1$, then find the value of $\left(y-\frac{1}{y}\right)$.
Question : If $x=\sqrt3+\frac{1}{\sqrt3}$, then the value of $(x-\frac{\sqrt{126}}{\sqrt{42}})(x-\frac{1}{x-\frac{2\sqrt3}{3}})$ is:
Question : If $a=\frac{1}{a-\sqrt{6}}$ and $(a>0)$, then the value of $\left(a+\frac{1}{a}\right)$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile