Question : If $\left(x+\frac{1}{x}\right)=\sqrt{6}$ and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)$?
Option 1: $120\sqrt{3}$
Option 2: $128\sqrt{3}$
Option 3: $112\sqrt{3}$
Option 4: $108\sqrt{3}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $112\sqrt{3}$
Solution : $\left(x+\frac{1}{x}\right)=\sqrt{6}$ Squaring both sides, $\left(x^2+\frac{1}{x^2}+2\right)=6$ ⇒ $x^4-4x^2+1=0$ ⇒ $x^2=\frac{4\pm2\sqrt{3}}2$ ⇒ $x^2 = 2+\sqrt{3}$ (Since $x>0$) Squaring both sides, ⇒ $x^4 = 7+4\sqrt{3}$ Squaring both sides ⇒ $x^8 = 97+56\sqrt{3}$ So, $\frac{1}{x^8}=97-56\sqrt{3}$ So, $x^8-\frac{1}{x^8}=112\sqrt{3}$ Hence, the correct answer is $112\sqrt{3}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\left(x+\frac{1}{x}\right)=2 \sqrt{2}$ and $x>1$, what is the value of $\left(x^6-\frac{1}{x^6}\right)$?
Question : If $\left(x-\frac{1}{x}\right)^2=12$, what is the value of $\left(x^2-\frac{1}{x^2}\right)$, given that $x>0$?
Question : If $\left(x^2 - \frac{1}{x^2}\right) = 4 \sqrt{6}$ and $x>1$, what is the value of $\left(x^3 - \frac{1}{x^3}\right)?$
Question : If ${\left(x-\frac{1}{x}\right)=\sqrt{6}}$ and $x > 1$, what is the value of ${\left(x^8-\frac{1}{x^8}\right)}$?
Question : If $\left(x+\frac{1}{x}\right)=5$, and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile