Question : If ${\left(x-\frac{1}{x}\right)=\sqrt{6}}$ and $x > 1$, what is the value of ${\left(x^8-\frac{1}{x^8}\right)}$?
Option 1: $1024 \sqrt{15}$
Option 2: $992 \sqrt{15}$
Option 3: $998 \sqrt{15}$
Option 4: $1012 \sqrt{15}$
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $992 \sqrt{15}$
Solution : $(x-\frac{1}{x})=\sqrt{6}$ Squaring both sides, ⇒ $(x^{2} +\frac{1}{x^2}-2)=6$ ⇒ $(x^{2} +\frac{1}{x^2})=8$ Squaring both sides, ⇒ $(x^{4}+\frac{1}{x^4}+2)=64$ ⇒ $(x^{4}+\frac{1}{x^4}) = 62$ Squaring both sides, ⇒ $(x^{8}+\frac{1}{x^8}+2)=3844$ ⇒ $(x^{8}+\frac{1}{x^8})=3842$ ⇒ $(x^{8}+\frac{1}{x^8})^2=3842^2$ ⇒ $(x^{8}-\frac{1}{x^8})^2=(x^{8}+\frac{1}{x^8})^2 - 4$ ⇒ $(x^{8}-\frac{1}{x^8})^2=3842^2 - 2^2$ ⇒ $(x^{8}-\frac{1}{x^8})^2=(3842 +2)(3842-2)$ ⇒ $(x^{8}-\frac{1}{x^8})^2=3844 \times 3840$ ⇒ $(x^{8}-\frac{1}{x^8})^2=4 × 31 × 31 × 4 × 4 × 4 × 4 × 15$ ⇒ $(x^{8}-\frac{1}{x^8}) = 31 × 2 × 4 × 4 × \sqrt{15}$ Hence, the correct answer is $992 \sqrt{15}$.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\left(x+\frac{1}{x}\right)=\sqrt{6}$ and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)$?
Question : If $\left(x-\frac{1}{x}\right)^2=12$, what is the value of $\left(x^2-\frac{1}{x^2}\right)$, given that $x>0$?
Question : If $\left(x^2 - \frac{1}{x^2}\right) = 4 \sqrt{6}$ and $x>1$, what is the value of $\left(x^3 - \frac{1}{x^3}\right)?$
Question : If $\left(x+\frac{1}{x}\right)=2 \sqrt{2}$ and $x>1$, what is the value of $\left(x^6-\frac{1}{x^6}\right)$?
Question : If $\left(x+\frac{1}{x}\right)=5$, and $x>1$, what is the value of $\left(x^8-\frac{1}{x^8}\right)?$
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile