Question : If $(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}) = 0$ and $x+y+z = 9$, what is the value of $x^{3} + y^{3}+z^{3}-xyz$?
Option 1: 81
Option 2: 361
Option 3: 729
Option 4: 6561
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 729
Solution : Given: $\left ( \frac{1}{x}+\frac{1}{y}+\frac{1}{z} \right )=0$ ⇒ $xy + yz+zx = 0$ Given: $x+y+z = 9$ We know, $x^{3}+y^{3}+z^{3}-3xyz = \left ( x+y+z \right )\left ( x^{2}+y^{2}+z^{2}-xy-yz-zx \right )$ ⇒ $x^{3}+y^{3}+z^{3}-3xyz = \left ( x+y+z \right )\left (\left ( x+y+z \right )^{2}-3\left ( xy+yz+zx \right ) \right )$ Substituting values of the expressions $x+y+z$ and $xy+yz+zx$, $x^{3}+y^{3}+z^{3}-3xyz = 9\times( 9^{2}-3(0)=729$ Hence, the correct answer is 729.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{(y z)}+\frac{y^2}{(x z)}+\frac{z^2}{(x y)}$?
Question : If $\frac{(x+y)}{z}=2$, then what is the value of $[\frac{y}{(y-z)}+\frac{x}{(x-z)}]?$
Question : The value of $\frac{(x-y)^3+(y-z)^3+(z-x)^3}{6(x-y)(y-z)(z-x)}$, where $x \neq y \neq z$, is equal to:
Question : If $\frac{1}{x+\frac{1}{y+\frac{2}{z+\frac{1}{4}}}}=\frac{29}{79}$, where x, y, and z are natural numbers, then the value of $(2 x+3 y-z)$ is:
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{3z}+\frac{y^3}{3xz}+\frac{z^2}{3x}$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile