Question : If $x^2+y^2=29$ and $xy=10$, where $x>0,y>0$ and $x>y$. Then the value of $\frac{x+y}{x-y}$ is:
Option 1: $- \frac{7}{3}$
Option 2: $\frac{7}{3}$
Option 3: $\frac{3}{7}$
Option 4: $-\frac{3}{7}$
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: $\frac{7}{3}$
Solution : Given: $x^2+y^2=29$, $xy=10$ $x^2+y^2=29$ ⇒ $x^2+y^2+20=29+20$ (adding 20 on both sides) ⇒ $x^2+y^2+2×10=49$ ⇒ $x^2+y^2+2×xy=49$ (as $xy=10$) ⇒ $(x+y)^2=7^2$ ⇒ $x+y=7$ Now, ⇒ $x^2+y^2-20=29-20$ (subtracting 20 on both sides) ⇒ $x^2+y^2-2×xy=9$ (as $xy=10$) ⇒ $(x-y)^2=3^2$ ⇒ $x-y=3$ In the same way, we get $x-y=3$ So, $\frac{x+y}{x-y}=\frac{7}{3}$ Hence, the correct answer is $\frac{7}{3}$.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $\frac{1}{x+\frac{1}{y+\frac{2}{z+\frac{1}{4}}}}=\frac{29}{79}$, where x, y, and z are natural numbers, then the value of $(2 x+3 y-z)$ is:
Question : If $x^2+4y^2=17$ and $xy = 2$, where $x > 0, y > 0$, then what is the value of $x^3+8y^3$?
Question : If $x+y+z=0$, then the value of $\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}$ is:
Question : If $x+y+z=0$, then what is the value of $\frac{x^2}{yz}+\frac{y^2}{xz}+\frac{z^2}{xy}$?
Question : If $x=\frac{\sqrt{5}+1}{\sqrt{5}-1}$ and $y=\frac{\sqrt{5}-1}{\sqrt{5}+1}$, then the value of $\frac{x^{2}+xy+y^{2}}{x^{2}-xy+y^{2}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile