Question : If $\frac{xy}{x+y}=a$, $\frac{xz}{x+z}=b$ and $\frac{yz}{y+z}=c$, where $a,b,c$ are all non-zero numbers, $x$ equals to:
Option 1: $\frac{2abc}{ab+bc–ac}$
Option 2: $\frac{2abc}{ab+ac–bc}$
Option 3: $\frac{2abc}{ac+bc–ab}$
Option 4: $\frac{2abc}{ab+bc+ac}$
New: SSC CHSL tier 1 answer key 2024 out | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{2abc}{ac+bc–ab}$
Solution : Given: $\frac{xy}{x+y}=a$, $\frac{xz}{x+z}=b$ and $\frac{yz}{y+z}=c$, where $a,b,c$ are all non-zero numbers. We can write $\frac{xy}{x+y}=\frac{1}{\frac{1}{x}+\frac{1}{y}}$ ⇒ $\frac{1}{a}=\frac{1}{x}+\frac{1}{y}$ -------------------------------(1) Similarly, we can write, $\frac{xz}{x+z}=\frac{1}{\frac{1}{x}+\frac{1}{z}}$ ⇒ $\frac{1}{b}=\frac{1}{x}+\frac{1}{z}$ --------------------------------(2) Similarly, $\frac{1}{c}=\frac{1}{y}+\frac{1}{z}$ ----------------------(3) Adding equation (1) and equation (2), ⇒ $\frac{1}{a}+\frac{1}{b}=\frac{2}{x}+\frac{1}{y}+\frac{1}{z}$ ⇒ $\frac{1}{a}+\frac{1}{b}=\frac{2}{x}+\frac{1}{c}$ ⇒ $\frac{1}{a}+\frac{1}{b}–\frac{1}{c}=\frac{2}{x}$ ⇒ $\frac{(bc+ac–ab)}{abc}=\frac{2}{x}$ $\therefore x=\frac{2abc}{(bc+ac–ab)}$ Hence, the correct answer is $\frac{2abc}{(bc+ac–ab)}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $xy+yz+zx=0$, then $(\frac{1}{x^2–yz}+\frac{1}{y^2–zx}+\frac{1}{z^2–xy})$$(x,y,z \neq 0)$ is equal to:
Question : If $x : y$ is the ratio of two whole numbers and $z$ is their HCF, then the LCM of those two numbers is:
Question : Simplify the given expression. $\frac{x^3+y^3+z^3-3 x y z}{(x-y)^2+(y-z)^2+(z-x)^2}$
Question : In $\triangle X Y Z, P$ is a point on side YZ and XY = XZ. If $\angle X P Y=90°$ and $Y P=9\ \text{cm}$, then what is the length of $YZ$?
Question : If $\small x+y+z=6$ and $xy+yz+zx=10$, then the value of $x^{3}+y^{3}+z^{3}-3xyz$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile