Question : If $x^2+4y^2=17$ and $xy = 2$, where $x > 0, y > 0$, then what is the value of $x^3+8y^3$?
Option 1: 95
Option 2: 85
Option 3: 65
Option 4: 76
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 65
Solution :
$x^2 + 4y^2 = 17$ and $xy = 2$, where $ x > 0, y > 0$ $⇒ xy = 2$ $⇒4xy = 8$ Now, $(x + 2y)^2= x^2 + 4y^2 + 4xy = 17 + 8 = 25$ $⇒ (x + 2y) = 5$ Also, $x^3 + 8y^3 = (x + 2y) (x^2 + 4y^2 - 2xy)$ $⇒ x^3 + 8y^2 = (5) × (17 - 4) = 65$ Hence, the correct answer is 65.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $x^2+y^2=29$ and $xy=10$, where $x>0,y>0$ and $x>y$. Then the value of $\frac{x+y}{x-y}$ is:
Question : If $x^2-xy+y^2=2$ and $x^4+x^2y^2+y^4=6$, then the value of $(x^2+xy+y^2)$ is:
Question : If $x=(0.25)^\frac{1}{2}$, $y=(0.4)^{2}$, and $z=(0.216)^{\frac{1}{3}}$, then:
Question : If $x+y+z=0$, then the value of $\frac{x^2}{yz}+\frac{y^2}{zx}+\frac{z^2}{xy}$ is:
Question : If $(x+y)^2=xy+1$ and $x^3-y^3=1$, what is the value of $(x-y)$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile