Question : If $a, b, c$ are all non-zero and $a+b+c=0$, then find the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{ab}$.
Option 1: $3$
Option 2: $4$
Option 3: $1$
Option 4: $\frac{1}{2}$
Correct Answer: $3$
Solution : Given: $a+b+c=0$ According to the question, $a^3+b^3+c^3=3abc$ Dividing both sides by $abc$, we get $\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{3abc}{abc}$ ⇒ $\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=3$ Hence, the correct answer is 3.
Result | Eligibility | Application | Selection Process | Cutoff | Admit Card | Preparation Tips
Question : If $a+b+c=0$, then the value of $\frac{a^2}{b c}+\frac{b^2}{c a}+\frac{c^2}{a b}$ is:
Question : If $a+b+c=0$, then the value of $\frac{a^{2}+b^{2}+c^{2}}{ab+bc+ca}$ is:
Question : If $a^{2}+b^{2}+c^{2}=ab+bc+ca,$ then the value of $\frac{a+c}{b}$ is:
Question : If for a non-zero $x$, $3x^{2}+5x+3=0,$ then the value of $x^{3}+\frac{1}{x^{3}}$ is:
Question : If $(a^2 = b + c)$, $(b^2 = a + c)$, $(c^2 = b + a)$. Then, what will be the value of $(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1})$?
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile