Question : If $a, b, c$ are real numbers and $a^{2}+b^{2}+c^{2}=2(a-b-c)-3,$ then the value of $a+b+c$ is:
Option 1: –1
Option 2: 1
Option 3: 3
Option 4: 0
Latest: SSC CGL Tier 1 Result 2024 Out | SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL Tier 1 Scorecard 2024 Released | SSC CGL complete guide
Suggested: Month-wise Current Affairs | Upcoming Government Exams
Correct Answer: –1
Solution : Given: $a, b$ and $c$ are real numbers. $a^{2}+b^{2}+c^{2}=2(a-b-c)-3$ $⇒a^{2}+b^{2}+c^{2}-2a+2b+2c+3=0$ $⇒(a-1)^{2}+(b+1)^{2}+(c+1)^{2}=0$ $⇒a=1, b=-1, c=-1$ $a+b+c=1-1-1=-1$ Hence, the value of $a+b+c$ is –1. Hence, the correct answer is –1.
Candidates can download this ebook to know all about SSC CGL.
Result | Eligibility | Application | Selection Process | Preparation Tips | Admit Card | Answer Key
Question : If $a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}$ where $a \neq b\neq c\neq 0$, then the value of $a^{2}b^{2}c^{2}$ is:
Question : If $a+b+c = 0$, then the value of $\small \frac{1}{(a+b)(b+c)}+\frac{1}{(b+c)(c+a)}+\frac{1}{(c+a)(a+b)}$ is:
Question : If $a+b=2c$, then the value of $\frac{a}{a–c}+\frac{c}{b–c}$ is equal to (where $a\neq b\neq c$):
Question : If $a$ and $b$ are rational numbers and $(a-1)\sqrt2+3=b\sqrt2+a$; then the value of $(a+b)$ is:
Question : If $(a+\frac{1}{a})=–2$, then the value of $a^{1000}+a^{–1000}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile