Question : If $\theta$ be an acute angle and $\tan \theta+\cot \theta=2$, then the value of $2 \tan ^2 \theta+\cot ^2 \theta+\tan ^4 \theta \cot ^4 \theta$ is:
Option 1: 4
Option 2: 2
Option 3: 3
Option 4: 6
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 4
Solution : Given, $\tan \theta+\cot \theta=2$ We know, $\cot\theta=\frac{1}{\tan\theta}$ ⇒ $\tan\theta+\frac{1}{\tan\theta}=2$ ⇒ $\tan^2\theta+1=2\tan\theta$ ⇒ $\tan^2\theta+1-2\tan\theta=0$ ⇒ $(\tan\theta-1)^2=0$ ⇒ $\tan\theta-1=0$ ⇒ $\tan\theta = 1$ [As $\theta$ is an acute angle] ⇒ $\cot\theta=1$ Now consider, $2 \tan ^2 \theta+\cot ^2 \theta+\tan ^4 \theta \cot ^4 \theta$ = $2\times(1)^2+1^2+(1)^4\times(1)^4$ = $2+1+1=4$ Hence, the correct answer is 4.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\tan 2 \theta=\cot \left(\theta-36^{\circ}\right)$, where $2 \theta$ is an acute angle, then the value of $\theta$ is:
Question : If $\sqrt{3} \tan ^2 \theta-4 \tan \theta+\sqrt{3}=0$, then what is the value of $\tan ^2 \theta+\cot ^2 \theta$?
Question : If $\tan \theta-\cot \theta=4$, then find the value of $\tan ^2 \theta+\cot ^2 \theta$.
Question : If $\tan \theta+\sin \theta=A$ and $\tan \theta-\sin \theta=B$, then what is the value of $A^2-B^2$?
Question : If $\tan \theta \cdot \tan 2 \theta=1$, then the value of $\cot 5 \theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile