Question : If $\tan\theta+\sec\theta=3$, $\theta$ being acute, the value of $5\sin\theta$ is:
Option 1: $\frac{5}{2}$
Option 2: $\frac{\sqrt{3}}{5}$
Option 3: $\frac{5}{\sqrt{3}}$
Option 4: $4$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $4$
Solution : Given: $\theta$ being acute. $⇒\tan\theta+\sec\theta=3$ ... (1) We know the identity, $⇒\sec^2\theta-\tan^2\theta=1$ $⇒(\tan\theta+\sec\theta)( \sec\theta-\tan\theta)=1$ $⇒\sec\theta-\tan\theta=\frac{1}{3}$ ... (2) Solving equation (1) and (2), $⇒2\sec\theta=3+\frac{1}{3}$ $⇒2\sec\theta=\frac{10}{3}$ $\therefore\sec\theta=\frac{5}{3}$ $⇒\cos \theta=\frac{3}{5}$ $⇒ {\sin \theta=\sqrt{1-\cos^2\theta}=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}}$ $\therefore 5\sin \theta=5×\frac{4}{5}=4$ Hence, the correct answer is $4$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If $\sqrt{2} \sec ^2 \theta-4 \sec \theta+2 \sqrt{2}=0$, then what is the value $\sin ^2 \theta+\tan ^2 \theta$?
Question : If $(r\cos \theta -\sqrt{3})^{2}+(r\sin \theta -1)^{2}=0$, then the value of $\frac{r\tan \theta +\sec \theta}{r\sec \theta +\tan\theta}$ is equal to:
Question : If $\sec\theta +\tan\theta = 3$, then what is the value of $\sec \theta-\tan \theta$?
Question : If $\tan \theta=\frac{8}{15}$, then the value of $\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$ is:
Question : If $\sec \theta+\tan \theta=\frac{1}{\sqrt{3}}$, then the positive value of $\cot \theta+\cos \theta$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile