Question : If cos A = $\frac{5}{13}$, then what is the value of (tan A + cot A)?
Option 1: $\frac{60}{169}$
Option 2: $\frac{109}{169}$
Option 3: $\frac{169}{60}$
Option 4: $\frac{169}{109}$
New: SSC CHSL Tier 2 answer key released | SSC CHSL 2024 Notification PDF
Recommended: How to crack SSC CHSL | SSC CHSL exam guide
Don't Miss: Month-wise Current Affairs | Upcoming government exams
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: $\frac{169}{60}$
Solution : Given that $\cos A = \frac{5}{13}$, So, $\sin A = \sqrt{1 - \cos^2 A} = \sqrt{1 - \left(\frac{5}{13}\right)^2} = \frac{12}{13}$ $⇒\tan A = \frac{\sin A}{\cos A}$ and $\cot A = \frac{1}{\tan A}$ $⇒\tan A = \frac{\sin A}{\cos A} = \frac{12}{5}$ $⇒\cot A = \frac{1}{\tan A} = \frac{5}{12}$ $\therefore \tan A + \cot A = \frac{12}{5} + \frac{5}{12} = \frac{144 + 25}{60} = \frac{169}{60}$ Hence, the correct answer is $\frac{169}{60}$.
Candidates can download this e-book to give a boost to thier preparation.
Result | Eligibility | Application | Admit Card | Answer Key | Preparation Tips | Cutoff
Question : If in a right-angled $\triangle P Q R$, $\tan Q=\frac{5}{12}$, then what is the value of $\cos Q$?
Question : If $\mathrm{A}=\cot 30^{\circ} \tan 60^{\circ}+\cot 60^{\circ} \tan 30^{\circ}$, then what is the value of A?
Question : If $\sqrt{3} \tan ^2 \theta-4 \tan \theta+\sqrt{3}=0$, then what is the value of $\tan ^2 \theta+\cot ^2 \theta$?
Question : If $\sec \beta+\tan \beta=2$, then what is the value of $\cot \beta$?
Question : If $\sin A=\frac{3}{5}$, calculate the value of $\cos A+\tan A-1$.
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile