Question : If $p+q+r=pqr=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$, find $\mathrm{p}^3+\mathrm{q}^3+\mathrm{r}^3$.
Option 1: 1
Option 2: –1
Option 3: 5
Option 4: –5
Latest: SSC CGL preparation tips to crack the exam
Don't Miss: SSC CGL complete guide
New: Unlock 10% OFF on PTE Academic. Use Code: 'C360SPL10'
Correct Answer: 1
Solution : Given: $p+q+r=pqr=\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$ $\frac{1}{p}+\frac{1}{q}+\frac{1}{r}=1$ ⇒ $\frac{qr+pr+pq}{pqr}=1$ ⇒ $pr+qr+pq=pqr$ ⇒ $pr+qr+pq=1$ Now, $(p+q+r)^2=1^2$ ⇒ $p^2+q^2+r^2+2(pq+pr+qr)=1$ ⇒ $p^2+q^2+r^2+2=1$ $\therefore p^2+q^2+r^2=-1$ $p^3+q^3+r^3$ $=(p+q+r)(p^2+q^2+r^2-pq-pr-qr)+3pqr$ $=(p+q+r)[p^2+q^2+r^2-(pq+pr+qr)]+3pqr$ $=1×[-1-1]+3×1$ $=-2+3$ $=1$ Hence, the correct answer is 1.
Candidates can download this ebook to know all about SSC CGL.
Answer Key | Eligibility | Application | Selection Process | Preparation Tips | Result | Admit Card
Question : If $\mathrm{p}=\frac{\sqrt{2}+1}{\sqrt{2}-1}$ and $\mathrm{q}=\frac{\sqrt{2}-1}{\sqrt{2}+1}$ then, find the value of $\frac{\mathrm{p}^2}{\mathrm{q}}+\frac{\mathrm{q}^2}{\mathrm{p}}$.
Question : If $\frac{a}{q-r}=\frac{b}{r-p}=\frac{c}{p-q}$, find the value of $(pa+qb+rc)$.
Question : PQR is a triangle right-angled at Q and PQ : QR = 3 : 4. What is the value of $\sin P + \sin Q + \sin R?$
Question : The value of $ \frac{(p-q)^3+(q-r)^3+(r-p)^3}{12(p-q)(q-r)(r-p)}$, where $p \neq q \neq r$, is equal to:
Question : The value of $\frac{p^{2}- (q - r)^{2}}{(p + r)^{2} - (q)^{2}}$ + $\frac{q^{2} - (p - r)^{2}}{(p + q)^{2} - (r)^{2}}$ + $\frac{r^{2}- (p - q)^{2}}{(q + r)^{2} - (p)^{2}}$ is:
Regular exam updates, QnA, Predictors, College Applications & E-books now on your Mobile